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TECHNICAL NOTE 3233

A REVIEW OF PLANING THEORY AND EXPERIMENT WITH A
THEORETICAL STUDY OF PURE-PLANING LIFT OF
RECTANGULAR FLAT PLATES

By Charles L. Shuford, Jr.
SUMMARY

A summary is given of the background and present status of the pure-
planing flat-plate 1ift theories. The fundamental assumptions and the
applicability to actual calculations of the planing 1ift force are
reviewed. -

A proposed theory based on the consideration of linear lifting-line
theory less the suction component of 1ift plus- crossflow effects is pre-
sented. A comparison of this theory with existing planing formulas and
experimental data is made. The agreement between the results calculated
by the proposed theory and the experimental data is satisfactory for engi-
neering calculations of pure—planing rectangular-flat-plate 1lift and cen-
ter of pressure.

INTRODUCTION

Recent developments in water-based aircraft have resulted in config-
urations utilizing planing surfaces operating in ranges of trim, length-
beam ratio, and Froude number beyond those for which most of the aveil-
able planing theories were correlated with experimental data. In order
to determine whether available planing theories are adequate in estimating
the planing 1ift in these extended ranges, a review of these theories
(refs. 1 to 13) and a correlation with ‘existing data, including recent
and unpublished data, were made and are presented herein. For purposes
of expediency and simplification, this work is limited to the case of
the rectangular flat plate in pure planing, that is, ‘where buoyancy can
be considered as negligible.

In addition to this review and correlation, an additional theory
for the 1ift and center of pressure of a rectangular flat plate was devel-
oped and correlated with the pure-planing data. The proposed theory dis-
tinguishes between linear and nonlinear components of 1ift and is divided
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into three parts: first, a reasonably accurate approximation to the
linear components of 1ift; second, an estimation of the aerodynamic
leading-~edge-suction component of 1ift contained in the linear term; and
third, a method for caleulating the crossflow effects.

SYMBOIS
A aspect ratio, b2/S
b beam of planing surface, ft
QL 1ift coefficient, 5
5 Ves
C1, 1ift coefficient due to buoyancy,
B P 2
‘ — V=S
2
Cy; 1lift coefficient based on square of beam, 5
b P 2,2
-V
2
CIS 1ift coefficient based on principal wetted area,
A Cry,
E-VQS 1m/b
2
Cyx normal-force coefficient, N
£ v2s
2
Cy speed coefficient or Froude number, V/\ gb
g acceleration due to gravity, 32.2 ft/sec2

L 1ift of planing surface, 1b
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1ift due to buoyancy, 1b

wetted length of planing surface or chord of airfoil, ft

mean wetted length, %

center-of-pressure location (measured forward of trailing
edge), ft

nondimensional center-of-pressure location

section lift-curve slope per radian

normal force, 1b

free-stream dynamic pressure, %¢v2, 1b/sq £t

principal wetted area (bounded by trailing edge, chines,
and heavy spray line), sq ft

horizontal velocity, fps

induced vertical velocity

induced vertical velocity at distance y from center line
of airfoil

distance from center line of airfoil to point where value
of downwash is desired

vy,

circulation or strength of vortex,

nondimensional loading parameter, Cql*
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A vertical load, 1b
n distance from center line of airfoil to vortex
T]* = _H_.

b/2

Bl =‘cos'ly*
P mass density of water, slugs/cu ft

T trim (angle between planing bottom and horizontal), radians
unless otherwise stated

induced angle of trim, w/V

T1
TS5 induced angle of trim at distance y from center line of
y airfoil, wy/V
¥y
P Pabst's aspect-ratlo correction factor based on the ratio

of wetted length to mean beam
REVIEW OF EXISTING PLANING-LIFT THEORY

Wagner (ref. 1) considered the plaening-force problem theoretically;
however, his work 1s valuable mainly for the basic concepts presented in
the application of the methods of airfoil theory to the planing problem.
Wagner's work consists of studies of the flow processes and solutions for
the force on an idealized two-dimensional planing surface; therefore, his
work is not directly applicable for calculating the 1ift on a finite-
aspect-ratio planing surface.

In planing theories such as that of Mayo (ref. 2) developed from
virtual-mass considerations based on transverse flow, the assumption is
made that the planing force can be calculated from the rate at which
momentum is imparted to the downwash; however, the effect of aspect ratio
%s approximated by the Pabst empirical aspect-ratio correction factor

ref. 14).
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In reference 3 Sokolov presented a combined theoretical and experi-
mental solution of the planing problem. The theoretical formulas, which
were 'developed for the two-dimensional case, were derived by using
Bernoulli's equation and disturbance velocities. A finite-aspect-ratio
plening-1ift formula was developed by using Sottorf's experimental results
(ref. 15) to determine empirically the value of the factor e which is
the ratio of the change in velocity along the planing surface to the
velocity of the free stream. The plening formula gives the 1lift forces
in three components: the hydrostatic, the one due to circulation, and
the one due to form. The solution given by Sokolov for pure-planing
flat-plate 1ift 1s

Crg = e(2 - €)ecos T (1)

where curves for € are given in reference 3.

Sokolov gives a qualitative picture of the planing problem and deter-
mines the nature of the forces involved. The concepts presented, however,
have not been used in the development of subsequent planing formulas,
which have been empirical or follow the work of Wagner.

Perring and Johnston (ref. 4) presented the empirical relationship

OLS = CART (2)

and by analyzing Sottorf's data (ref. 15) found the following formula
to apply:

Crg = 0.9040 k2 (3)

*Ih reference 5, Sottorf proposed the formula

Org = 0.8458° 21 ' (%)

An equation thet hes a form similar to airfoil lifting-line theory
was presented by Perelmuter (ref. 6). The equation is

CLS = 2AT (5)




6 ' NACA TN 3233

Sedov (ref. 7) gives an equation based on the data of Sottorf
(ref. 15) and Sambraus (ref. 16) which has the form

_ 0.TxAT
‘15 = A+ 1.4 (6)

An equation that contains a linear and nonlinear term was presented
by Siler in reference 8. The lineer term was obtained by assuming a form
similar to alrfoil 1ifting-line theory; however, the aspect-ratio factor
was altered to give a deflected mass one-half that predicted by Jones
(ref. 17) for a ~ero-aspect-ratio wing. The nonlinear term was obtained
by a consideration of the transverse component of the flow (see ref. 18).
The equation can be written in the form

A sin T cos T
Cr.. = & + 0.88 8in2T cos T
1g e (7)

In reference 9, Korvin-Kroukovsky, Savitsky, and Lehman proposed
an equation derived primarily on the basis of the data of Sottorf (ref. 15)
and Sambraus (ref. 16). The formula can be written as

Crg = 0.01280 :5(57.37)1-1 (8)

In reference 10, Korvin-Kroukovsky presented an equation that con-
sisted of linear and nonlinesr components. The linear term was obtained
by a consideration of the downwash and the analytical solution for the
potential flow about a planing surface developed by Wagner (ref. 1) and
presented in detail by Pierson and Leshnover (ref. 19). The nonlinear
term was obtained by a consideration of the transverse component of the
flow. The equation has the form

AT

+ 0.8872
CIS A+ 2

However, this equation was empirically corrected to get better agreement
with experimental data, so that approximately

- O0.73rAT . 2
CLS A+2+088T (9)
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Iocke (ref. 11) assumed that the 1ift characteristics of low-aspect-
ratio surfaces can be represented by a simple power function of the form

CLS = DKtR

vhere K and n depend only on aspect ratio and D 1s primarily a
function of the operating conditions. For the case of the flat-plate
planing surface Locke gives the equation

Crg = 0 .5KT2 (10)

where curves for K and n are given in reference 11.
In reference 12 Perry assumed an equation for the ratio of planing

1ift to aerodynamic lift which converged to limits obtained by applying
airfoil methods to the planing surface. The equation has the form

Cig = ¥CLgirpoia (11)

where M represents the assumed equation for the ratio of plening 11ft
to aerodynamic 1ift given .by

Co8 T

B =
1+ cos T - (1 - cos T)loge<%;:¥fgf~l> + 5 sin T
2cos T )

Curves for M &and p are given in reference 12.

The limit of M for zero aspect ratio is 0.88 and for infinite °
aspect ratio is the value p. The value of M for zero aspect ratio is
a result given by Bollay (ref. 18). The value of M for infinite aspect
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ratio was obtained by a consideration of the analytical solution for the
potential flow about a planing surface developed by Wagner (ref. 1) and
presented in detail by Pierson and Leshnover (ref. 19).

An equation having a linear term with a form analogous to airfoil
lifting-surface theory was proposed by P. R. Crewe of Saunders-~Roe Ltd.
(British) in correspondence between himself and the Langley Laboratory.
This equation, based on the data of Kapryen and Weinstein (ref. 20), is

Crg = sin T cos T g- 1 + 2 sin T - B sin2T (12)
2
14+ \/1+ (f-)
where
= 2.67 : (A< 2.0)
B= 3.0 (A > 2.0)

Schnitzer (ref. 13) presented an equation derived from a considera-
tion of two-dimensional deflected mass, modified for three-dimensional
flow by the Pabst empirical aspect-ratio correction factor (ref. 14).
The equation can be written in the form

Crg = Q(E]% sin .1 cos T + 0.88 sin27> (13)

PROPOSED THEORY

An examination of experimental data indicates a pronounced nonlinear
relationship between the planing 1ift coefficients and the angle of attack;
therefore, linear theory would not provide adequete approximations to the
planing 1ift. The determination of linear and nonlinear components of
1lift is the approach generally used in low-aspect-ratio airfoll theory.
The present approach is based on the consideration of linear lifting-
line theory less the suction component of 1ift plus viscous crossflow
effects.
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Lift

Linear term.- The linear term is determined from a consideration of
lifting-line airfoil theory. Since the heavy spray line (leading edge)
of a planing surface is spproximately elliptic, the airfoil theory is
presented for an elliptic surface with elliptic loading and then modified
for the planing case.

By use of the Prandtl airfoil theory, the airfoil 1ift coefficient
is

Cp = mo(7 - 74) (1%)
vhere m, 1s the slope of the section 1ift curve.

If a sheet of tralling vortices located at 0.75 of the chord meas-
ured from the trailing edge and extending to infinity behind the airfoil
is assumed, then from vortex theory the induced angle of attack is

W b/2

,
* haVJ /2 an (n - y)

Y

where 1 18 the distance from the center line of the airfoil to the
vortex and y 1s the distance from the center line of the airfoil to
the point where the value of downwash is desired.

Now let

y* = 4 = cos 6, (16)
b/

n* = £§5-= cos 0 (271

* 1

17 = —— 18
b/2 (18)

and
y=2L (19)

bv
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where

7 = Cp1¥ = m1¥ (1 - 7y) (20)

From equation (15),

T
Ti:._l_féz ae
Y 8xJpo 48 cos 8 - cos 0y

Now let
o0
y = ay sin né (21)
n=1
then
o0
7 Z nan cos nb 4o
1 n=1

T; = — (22)
1y & O cos 8 - cos B3

The solution of this equation can be obtained by means of & recurrence
formula and the solution of a linear finite-difference equation (ref. 21);
thus,

- = nan sin nGJ 5

Since this equation is valid for any value of 6;, the subscripts on T4
and 6 can be dropped and equation (20) becomes

=1\mol® 8 sin o

T = 2?:( 1, D >an sin no (24)
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For an elliptic airfoil,

*_ 8
1t = rsin e (25)
and
T sin 8 = L ZA 4 ) sin ne an
Zn: 8|\mo
Let
o0
T sin 8 = :E: b, sin né (26)
n=1
then
ap = %n (27)
A
— +n
Mg
where
b1 .
b, = %f (T sin 6)sin n6 do (28)
0

Let T Dbe constant along the wing; then,

I
o

bl=T b2=b3=bn#l

an = 8] 8p = 83 =8y =0

The 1ift coefficient is given by

b/2
cp, = f e an (29)
b/2 @
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By use of equations (17), (19), and (21), equation (29) becomes

7T
%:%Oysined9=%Aan (30)

Therefore, from equations (27) and (28),

Cp, = ——— (31)

which is the equation for the 1ift on an airfoil.

For a low-aspect-ratio planing surface having flow only on one side,
the lift coefficient is assumed to be one-half the value given by equa-
tion (31) for a flat-plate airfoil, and m,, the lift-curve slope for the
two-dimensional planing surface, is assumed to be one-half the velue given
for a flat-plate airfoil; thus,

= O.5%AT
Cr = T2 (32)

which gives the linear component of 1ift on a pure-planing flat plate.

Suction component of 1ift.- An airfoil has a suction component of
1ift due to the large negative pressures at the leading edge of the air-
foil; however, for a planing surface this suction component of 1lift does
not appear. Therefore, the 1lift obtained from the linear term (eq. (32))
is less by an amount equal to the suction component of 1ift given by

CL = ClLyjpeay 51057 (33)

which is the wvalue indicated by Wagner in reference 22.

The linear term (eq. (32)) less the suction component of 1ift is

= O OmAT | gip2
o = =21 s1n2v) (3h)
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Crossflow term.- For a simple theoretical consideration of the non-
linear term, the velocity component perpendicular to the chord is assumed
to be of the magnitude V sin 7. The drag coefficient for a planing sur-
face of infinite aspect ratio is assumed to be 1.0, which is one-half the
value given for a two-dimensional flat-plate airfoil. For the planing
surface the flow is proJjected into components perpendicular and parallel
to the planing-surface chord line, and the drag force associated with the
flow perpendicular to the chord is calculated. Therefore, the normal
force is

N=1028(VsinT)2
and

CN = Sin2T

or

>

Cy, = sin®t cos T (35)

which is a 1lift due to crossflow effects and is proportional to sinaT,
which is the concept presented for airfoils by Betz in reference 23.

Total 1ift.- The total 1ift on a pure-planing rectangular flat plate
can be obtained by adding equations (34) and (35) and is

Cig = O 5ﬂAT(l sinzT) + sin®T cos T (36)
14+ A

which represents the linear term less the suction component of 1ift plus
the crossflow term. The magnitude of the crossflow effects, total 1ift,
and total 1ift excluding suction effects is shown in figure 1.

Comparison of proposed and previous planing formulas.- A comparison
of the proposed theory with previous planing formulas for constant length-
beam ratios is given in figure 2. In figure 2(&) the proposed theory is
compared with the planing formulas as presented by Sokolov (eg. (1)),
Perring and Johnston (eq. (3)), Sottorf (eq. (4)), Perelmuter (eq. (5)),
and Sedov (eq. (6)). In figure 2(b) the proposed theory is compared with
the planing formulas presented by Siler (eq. (7)), Korvin-Kroukovsky
(eq. (9)), and Schnitzer (eq. (13)). In figure 2(c) the proposed theory
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is compared with the planing formulas presented by Korvin-Kroukovsky,
Savitsky, and Lehmen (eq. (8)), Locke (eq. (10)), and Crewe (eq. (12)).

The values given by the formula presented by Perry (ref. 12) were
not plotted since the results depended on the airfoil data used. Perry
showed that by using Winter's airfoil data (ref. 24) his formula approxi-
mated the results given by the formula presented by Korvin-Kroukovsky,
Savitsky, and Iehman (ref. 9) for trims up to 12° and length-beam ratios
below approximately 1.0.

Center of Pressure

The center of pressure on & planing surface of small aspect ratio
may be considered to have two components, the component due to the linear-
1lift term less the suction effects and the component due to the crossflow
term. The center of pressure for the 1ift due to the linear component of
1ift less the suction effects (eq. (34)) is assumed to be located at 0.75
of the mean wetted length from the trailing edge of the planing surface.
The center of pressure for the 1ift due to the crossflow term (eq. (35))
is assumed to be located at the center of the mean wetted length; there-
fore,

= (37)
1

0. C - C + 0.5C
<Eg> _ 75( Ltotal Lcrossflow) 2 Lcrossflow
m/calce Cltotal

which is a formula analogous to that used in airfoil theory. The com-
ponents of 1ift are determined from equations (35) and (36).

COMPARTSON OF THEORY AND EXPERTMENT

Buoyancy

The experimental data were considered as pure planing if the 1ift
coefficient due to buoyancy, calculated from the wedge-shaped volumetrie
displacement of the planing surface below the level water surface and
given by

m 1
CLB > EE;E sin 2T (38)
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did not exceed a given value. The allowable 1lift coefficient due to
buoyancy, as determined from equation (38), was arbitrarily selected as
0.0l at & trim of 16°. The allowable lift coefficient due to buoyancy for
other trims was determined by drawing a straight line from zero trim and
zero 1lift coefficient due to buoyancy through the value 0.0l at a trim

of 16°. The permissible 1lift coefficient due to buoyancy for the data
selected by this method at a trim of 2° varied from 16 percent at a length-
beam ratio of 8 to 3.3 percent at a length-beam ratio of one-half. These
values decreased with increasing trim so that at 300 they would very from
6.5 percent at a length-beam ratio of 8 to 3.1 percent at a length-beam
ratio of one-half. Analysis of unpublished I.angley tank no. 2 data showed
that subtraction of the 1ift coefficient due to buoyancy computed from
equation (38) caused the data to approximately coincide (or collapse)

for different speeds at low trims (4°); however, at the higher trims

(16°) only approximately one-half of this value was needed to collapse

the data.

Lift

A comparison of the proposed theory with the experimental data of
Weinstein and Kapryan (ref. 25), unpublished NACA data, data of Shoemaker
(ref. 26), data of Locke (ref. 27), data of Sambraus (ref. 16), and data
of Sottorf (ref. 15) is presented in figures 3 to 10. Only the experi-
mental data indicated as pure planing by the method discussed in the
preceding section have been considered.

Figure 3 gives a comparison of the proposed theory with the data of
Weinstein and Kapryan (ref. 25). Figure 4 gives a comparison of the pro-
posed theory with unpublished Langley tank no. 2 data. The data of
Weinstein and Kapryan were obtained for a 4-inch-beam model tested at
various loads and speeds and the unpublished data were from a 2.5-inch-
beam model tested at a constant speed of 30 feet per second.

In figures 5 to 10 a comparison of experimental 1ift coefficients
given in references 25, 26, 27, 16, and 15 and unpublished NACA data
with the proposed formulas given by Crewe (eq. (12)), Locke (eq. (10)),
Korvin-Kroukovsky, Savitsky, and Lehman (eq. (8)), and the present paper
is presented. In general, the proposed theory gives an average of these
data. The formula presented by Crewe (eq. (12)) is in good agreement,
except at a trim of 30°, with the data of Weinstein and Kapryan (figs. 5(a)
and 5(b)), with the data of Sambraus (fig. 9), and with the data of Sottorf
(fig. 10). The formulas presented by Locke (eq. (10)) and Korvin-
Kroukovsky, Savitsky, and Lehman (eq. (8)) do not give so good a repre-
sentation of experimental data as the proposed theory or the formulas
presented by Crewe (eq. (12)). There are no experimental data at high
trims and large length-beam ratios to determine whether the planing for-
mulas give the correct variation of 1ift in this region. The agreement
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between the proposed theory and experiment is apparently satisfactory for
engineering calculations of pure-planing rectangular-flat-plate 1ift in
the ranges where experimental data are availsble.

Center of Pressure

The variation of center-of-pressure ratio with mean wetted-length—
beam ratio for the data of Weinstein and Kapryan (ref. 25) is shown in
figure 11 and for the unpublished Langley tank no. 2 data in figure 12.
The proposed theory is shown by the solid line in figures 11 and 12 where

lp ZP i
A —. The sgreement between the cuwrve for the proposed

b tm/ca1c P
theory and the experimental points appears to be satisfactory for engi-

neering calculations of pure-planing rectangular-flat-plate center of
pressure in the ranges where experimentel data are available.

CONCLUDING REMARKS

The proposed theory appears to predict the pure-planing rectangular-
flat-plate 1ift and center of pressure with engineering accuracy in the
ranges where experimental data are available; however, at high trims and
large wetted-length—beam ratios no data are available. The correlation
of experimental data and theory in this report seems to establish firmly
the utility of the . sin®T approach (where T is trim) to the nonline-

arity problem.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 10, 195k.
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Figure 3.- Comparison of proposed theory with experimental 1ift coeffi-

clents for the h-inch-beam rectangular-flat-plate planing-surface data
of Weinstein and Kapryan (ref. 25).
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(unpublished NACA data).
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